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This paper presents a Neumann-type vorticity boundary condition for
the vorticity formulation of the Navier-Stokes equations. The vorticity
creation process at the boundary, due to the no-slip condition, is
expressed in terms of a vorticity flux. The scheme is incorporated then
into a Lagrangian vortex blob method that uses a particle strength
exchange algorithm for viscous diffusion. The no-slip condition is not
enforced by the generation of new vortices at the boundary but instead
by modifying the strength of the vortices in the vicinity of the
boundary. € 1994 Academic Press, Inc.

INTRODUCTION

In this paper we present a scheme that concerns the
cnforcement of the no-slip boundary condition in the
vorticity-velocity formulation of the unsteady Navier—
Stokes equations. We are interested in the formulation of
the problem and its application to a Lagrangian vortex blob
method. A fractional step algorithm is employed and the
vorlicity creation process is modelled by a vorlicity flux
on the surface of the body. This flux is appropriately dis-
tributed to the computational clements, thus modifying
their vorticity so that the no-slip boundary condition is
enforced.

In the vorticity-velocity formulation of the boundary
conditions we may distinguish schemes that involve the
boundary value of the vorticity [19] or the vorticity flux
(Kinney and coworkers [10, t1]). In the context of vortex
method Chorin [3] introduced the idea of creating vortex
blobs at the surface of the body in order to enforce the
no-slip boundary condition. The existence ol such blobs on
the boundary, though, introduced a smoothing region lor
the vorticity on the boundary that significantly increases the
numerical diffusion of the scheme. Fo alleviate this difficulty
Chorin [4] proposed the vortex sheet method based on a
coupling of the solution of the Prandtl boundary layer equa-
tions near the body and the full Navier-Stokes equations
away from it. However, this approach seems to encounter
difficulties with fully separated flows [17, where a well-
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defined boundary layer region fails to exist, and introduces
many parameters as to the region of validity of the
boundary layer equations, the transformation of vortex
sheets into vortex blobs, etc. Moreover, according to the
sheet model the number of computational eclements
increases at each time step as new elements are introduced
in the fluid in order to satis{y the no-slip condition.

In the present mecthod we implement an alternative
technique o enflorce the no-slip boundary condition in the
context of vortex methods. A Dirichlet-type condition
waould explicitly require the value of the vorticity at the wall.
The computation of such a quantity is prone to interpola-
tion errors that are further augmented by the use of a
Lagrangian grid. On the other hand, the present formula-
tion of a Neumann-type condition is not prone to such
interpolation errors and does not require additional com-
putational elements (vortex blobs) on the surface of the
body. Based on the implementation presented herein this
vorticity flux is distributed by diffusion to the existing blobs,
thus aitering their strength but without increasing their
population,

In the context of vortex methods this consists of modi-
lying the strength of the existing particles in the vicinity of
the boundary. This algorithm presents, then, an alternative
scheme to Chorin's algorithm of particle creation. It
eliminates some of the arbitariness of the above-mentioned
scheme and provides accurate results without the need for a
special type of elements (vortex sheets). It complements and
cxiends the scheme of particle strength exchange (for the
unbounded domain [6] and for the bounded one-dimen-
sional case {16] that accounts for dilfusion, as all viscous
cffects are treated by modilying the strength of the vortices.

1. THE 21 NAVIER-STOKES EQUATIONS

Two-dimensional incompressible unsteady flow of a
viscous fluid may be described in terms of the velocity
{u{x, 1)) and the vorticity (V xu=w=wé.) of the flow as

dwr
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Here v denotes the kinematic viscosity of the fluid, When the
flow is around a solid configuration (translating with
velocity U,(#) and rotating around its center of mass (x,)
with angular velocity £2(#)), boundary conditions need to be
enforced. On the surface of the body (x,) the velocity of the
fluid (u) is equal to the velocity of the body (U,):

u(x,)=U, (1a)
with
U, = U0+ (1) &% (X, — x,)
and at infinity,
u{x)-»U_ as  |x| - oo, (1b)

where U is the free stream velocity. Using the definition of
the vorticity and the continuity (V-u=0) it can be shown
that u is related to @ by the Poisson equation,

Viu= —Vxo. (2)

The velocity-vorticity formulation helps in eliminating the
pressure from the unknowns of the equations. However, for
bounded domains it introduces additional constraints in the
kinematics of the flow field and requires the transformation
of the velocity boundary conditions to vorticity form. The
proposed numerical method is based on the discretization of
the above equations in a Lagrangian frame using particle
(vortex) methods.

1.1. Particle (Vortex) Methods

The vorticity equation, Eq. (1), may be expressed in a
Lagrangian formulation by solving for the vorticity carrying
fluid elements (x,) based on the following set of equations:

dx

dta=u(xa, f) 5
dw

— =y V.

di v [

In the context of particle methods it is desirabie to replace
the right-hand side of Eqs. (3) by integral operators. These
operators are discretized using the locations of the particles
as quadrature points so that ultimately Eqs. (3) are replaced
by a set of ODEs whose solution is equivalent to the
solution of the original set of equations,

To this effect the velocity fieid may be determined by the
vorticity field using the Green’s function formulation for the
solution of Poisson’s equation (Eq. (2)),

1
U= g_JK(xgy)xmdy-ka(X, h
2r

where Uy(x, /) contains the contribution from the solid
body rotation and U, and K(z}=1z/|z|%. The use of the
Biot—Savart law to compute the velocity field guarantees the
enforcement of the boundary condition at infinity.

The Laplacian operator may be approximated by an
integral operator [6] as well so that

Vo x j G.(1x —yD)[e(x)—o(y)]dy,

where, in this paper, G, is taken to be G,(z)=(2/ne?)
exp(— |z|?/2¢?). The boundary condition Eq.(la) is
enforced by formulating the physical mechanism it
describes. The solid wall is the source of vorticity that enters
the flow. A vorticity flux {dw/3r) may be determined on the
boundary in a way that ensures that Eq. (1a) is satisfied.
Here a fractional step algorithm is presented that allows for
the caiculation of this vorticity flux. It is shown then that
this mechanism of vorticity generation can be expressed by
an integral operator as well,

dw dw

| H _ d

7 f (x,y) 7 (¥) dy,

where the kernel H is developed in Section 3. Using the
above integral representations for the right-hand side of
Eg. (3) we obtain the following set of equations:

ddx.;= _Z_LI_JK{xa—y)dey+U0(xa’ [)
CZ—?MJGﬂuxa—yn[w(xa)—w(mdy )
do O

EMJH( Y 3o {¥)dy

In vortex methods, the vorticity field is considered as a dis-
crete sum of the individual vorticity fields of the particles,
having core radius ¢, strength I{7), and an individual
distribution of vorticity determined by the function g5, s0
that

N
m(x, {): z rn(l) na(x_xn(t))'

n=1|

When this expression for the vorticity is substituted in
Eq. (4) the singular integral operators K, G are convolved
with the smooth function #, and are replaced by smooth
operators K., G,. These integrals are subsequently dis-
cretized using a quadrature having as quadrature points the
locations of the particles. Assuming that each particle
occupies a region of area £? and that the shape of the body
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is discretized by M panels then algorithmically the method
may be expressed as:

dx l

dt 2?1, ’zl FK ')+U0(xi1 [)

ar, _ &

— =V L =11 6% —x;0) (5)
t ot

ar,

M aw
dt =V mz‘_‘l H(Y:‘ﬂ Ym) a_n (ym)

r(0)y=w(x;, 0) 1, i=1,2, ., N

The characteristic of the present method is the replacement
of the differential operators by integral operators. The
advantage in employing integral operators is based on their
stability and efficiency. Integral operators are bounded and
smoothing, so that discrete approximations have a bounded
condition number as the mesh is refined. The Lagrangian
representation of the convective terms avoids many dif-
ficulties associated with its discretization on an Eulerian
mesh such as excess numerical diffusion. However, the
accuracy of the method relies on the accuracy of the
quadrature rule as information needs to be gathered from
the possibly scattered particle positions.

2. VORTICITY CREATION AT A SOLID
WALL—LIGHTHILL’S MODEL

The basis of the present formulation was originally
proposed by Lighthill [15]. The key observation is that
once the vorticity field is known then the entire flow field
may be determined (via the Biot-Savart law of velocity
induction). The vorticity field is convected and diffused in
the fluid but in the presence of solid boundaries one has to
account for the vorticity production on the solid walls as
well. Lighthill models this vorticity creation process by con-
sidering the body surface as a collection of vorticity sources
and sinks. To calculate these (unknown) vorticity strengths
he proposes that the velocity field must be computed on the
solid boundary from the known vorticity field. From
kinematic considerations, in order to ensure the no-through
flow boundary condition, a potential flow correction needs
to be superimposed to this velocity field. The resulting
velocity field would have (in general) a nonzero tangential
velocity component and one may view the surface of the
body as a vortex sheet. To ensure the no-slip condition and
model the vorticity creation process on the solid boundary
this vortex sheet has to be related to the vorticity produc-
tion at the wall. Lighthill concludes the description of his
model by stating that the vorticity per unit area has been
created and is equal to the negative of this vortex sheet
strength. What remains incompiete in this model is how this
vorticity enters the fluid adjacent to the wall or how the vor-

tex sheet strength may be incorporated in a vorticity-type
boundary condition.

One may observe that the strength of the vortex sheet has
dimensions of velocity (or length over time). To obtain an
appropriate (dimensionally correct} vorticity boundary
condition this vortex sheet strength can be manipulated so
that a Dirichlet-type (vorticity with dimensions 1/time) or
Neumann-type {vorticity flux with dimensions of accelera-
tion) may be obtained. This is basically the point of
diversion of the various formulations involving vorticity
boundary conditions. Chorin [3] divides the strength of the
vortex sheet by a length equal to the elementary discretiza-
tion length on the body surface, whereas Wu [19] divides
it by the distance from the wall to the first mesh point in the
computational domain, to obtain the vorticity on the body.
Kinney and his coworkers [10, 11] envision this vortex
sheet as equivalent to a vorticity flux over a small time
interval (thus dividing the sheet strength by time to obtain
the proper units of acceration). An integral constraint is
imposed on all formulations on the vorticity created at the
wall so as to satisfy Kelvin's theorem of production of
circulation.

In the present work the Neumann type vorticity
boundary condition was chosen. This choice was mainly
dictated by the use of vortex methods for the resolution of
the vorticity transport equation and it meshes well with the
scheme of particle strength exchange used for diffusion.

2.1. Mathematical Formulation

We consider a body translating with velocity U,(r) and
rotating with angular velecity {€2(¢)) immersed in a flow
field induced by a uniform flow (U, ) and vorticity in the
wake {c,(x, 1}). In the present formulation the solid body is
represented by suitable vorticity distributions determined so
that the entire flow field follows the prescribed solid body
motion. The interior of the body is replaced by a uniform
vorticity field (w,} with strength equal to twice the
magnitude of the angular velocity (w,=2), while the
surface of the body is replaced by a vortex sheet (bound vor-
ticity } with strength y(s) (Fig. 1).

As discussed by Lamb [14], the kinematic velocity field
is uniquely determined from the vorticity field if the no-
through flow boundary cendition ((u — U,) -n=0) has been
enforced on the surface of the body. A vortex sheet appears
then on the surface of the body and the enforcement of the
no-through flow boundary condition is equivalent to deter-
mining the strength of this vortex sheet. The strength of the
vortex sheet is computed using the streamfunction of the
flowfield. The resulting integral equation is given by

()= = § = [Lo [x(s) = x()| 1) d' = —2h(x(s))
(6)
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F1G. 1. Sketch showing the different contributions to the flow field of a body in translation and rotation immersed in a viscous incompressibie flow

field.,

where

¥,
=aa—nj— % {x(s)}—U,-s.
The solution properties of the above equation were
originally studied by Prager [18] who first introduced the
conecept of replacing the body surface by a continuous vor-
tex sheet. Equation (6) 1s singular, as it admits a non-unique
solution and requires that an extra constraint be imposed
on the strength of the vortex sheet. This property of the
equation is a fortuitous result, however, as it allows for the
coupling of the kinematic description of the flow field with
the viscous wall production of vorticity.

The model presented herein relies on the nullification of
this spurious vortex sheet at the body surface so as to
enforce the no-slip boundary condition. As this vortex sheet
is a constituent of the flow field its strength should account
for the modification of the circulation of the flow field.
Hence when it is eliminated from the body surface in the
interval [z, r + &1] the circulation (") of the flow field would
be modified according to

35})(3) ds= JHJ{ 3—;(11’.

T

h(x(s)) (x(s)) + (7)

(8)

On the other hand, Kelvin’s theorem states that the rate of
change of circulation in the flow field is defined as

dlr dw dQ

L b (v ds= —2 22
el IO dt

A5, (9)

where A, is the area of the body. Integrating Eq. (9) in the
interval [, t+ é¢] we obtain that
r+ar Jf7 , t+ 8t , do
j{ o _f, dt 3€v$(s)ds

= —24,[Q(1+ 1) —2(1)]. (10)

Comparing Eq. (8) and Eq. (10) the strength of the vortex
sheet may be related to the vorticity flux at the body surface
as

t+d1 g
[ @ dr= ) (11

or, if we consider this vorticity flux to be constant over the
small interval of time (1),

v‘;—‘;’(s)= ~y(s)dr.

(12)
This constitutes then a Neumann-type vorticity boundary
condition equivalent to the no-slip boundary condition as
expressed by Eq. (1a). The above formulation allows us
then to impose an integral constraint on the strength of the
vortex sheet 7y,

3€y(s)ds= —2A4,[ 0+ 61)— ()], (13)

and provides a closure for Eq. (6) that admits now a unique
solution.! Equation (6) and Eq.(13) may be discretized
using a boundary element (“panel”) method resulting in a
well-conditioned system of equations [137. A few observa-
tions should be made here as to the behavior of the above
formulation n the limit of ¢ — 0. First note that at the end
of a time step the spurious vortex sheet has been eliminated.
The strength of the vortex sheet is dependent on the external
flow field and the limit of a vanishing 8z, there would be
accordingly a vanishingly smali change for y as well, so that
the vorticity flux would remain finite. The numerical vor-

! Note that in Hydrodynamics the equivalent constraint would be a
Kutta type condition.
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ticity flux should be consistent with the actual vorticity flux
as computed by applying the momentum equation on the
wall. In body-fitted coordinates this results in

;.0
dt

dw

__ Lo de
wall on

235 (14)

wall wall

Vorticity is transfered to the fluid due to the tangential com-
ponent of the pressure gradient and a possible acceleration
of the body surface. In the present fractionat step algorithm
this pressure gradient is manifested by a spurious slip
velocity observed on the body surface. We may consider this
slip velocity as an acceleration “cquivalent™ to a vorticity
flux generated at the wall, so that at each time step Eq. (11)
is satisfied.

Once y has been computed (solving Eq. (13} and Eq. (6)
the vorticity flux is determined at the surface of the body
according to Eq. {12). This vorticity flux is subsequently dis-
tributed to the particles (by appropriately modifying their
strength} so that the spurious slip velocity is nullified and
the vorticity is generated in the fluid. This technique of
enforcing the no-slip boundary condition is consistent with
the scheme of particle strength exchange (PSE) that
accounts for diffusion. In the present method all viscous
effects are resolved by appropriately modifying the strength
of the particles,

3. DISTRIBUTION OF THE YORTICITY FLUX

Once the vorticity flux has been computed (via Eq. (12)})
it has to be distributed to the particles in the domain so that
vorticity enters the fluid. This is achieved in the context of
a fractional step algorithm by the solution of a diffusion
equation with homogeneous initial conditions and a
Neumann boundary condition.

3.1, Mathematical Formulation

We consider the diffusion equation for the vorticity
w(x, t) with homogeneous initial conditions and boundary
conditions of the Neumann type:

w,—vVim=0 in 2x[0,1]
w(x,0)=0 in%
a_“’=p(x, 1) on §2x[0,1],
on

where & denotes the computational domain bounded by the
surface of the body (¢%). The sclution of the above equa-
tion may be expressed in integral form [9] as

W(X, £)= L Lg Glx, 1,8, 7) p(E, t)ds, dr,  (15)

where pu(x, t) is determined by the solution of

%G (x, ;& 1) (&, T)ds  dr = F(x, 1)

1 ]
—-2_”("5 'r)+j‘0 s an

(16)

with

Gix, 1, E..J)=m

The resulting expressions for the vorticity field involve
integrals only over the surface of the body. Those integrals
may be discretized with a boundary integral method by
assuming that the surface of the body is composed of a set
of discrete panels (straight or curved} and assuming a
certain variation (constant, linear, etc.) of the unknown
function u(x, £} in space (over the panels) and time.

3.2. Geometrical Definitions

In order to explicitly evaluate the integral in Eq. (16) let
us consider the geometric representation of the body. From
Fig. 2 points on the body are defined by

where p = 1/x is the local radius of curvature of the bedy.
Points in the domain are defined as

X=X, + Rsin{a)é+ R cos(a) i.

Based on the above definitions we have also that
d . A -’rp a
y-dxpe—?dxp i

n
A

X=X, +R{cos a, sin a)

FIG. 2. Definition sketch.
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and the distance between the two points is then

lix —yli*=R*—2Rsin(a) x, + (1 + @) X+ 0(x3).

The evaluation of the integrals in Eq. (15) and Eq. (16) is
further simplified if we choose to neglect the terms
associated with the local curvature of the body or
equivalently describe the body with tangential flat panels.
A panel approximation to the body (Fig. 2) then introduces
points

Y, =X, 8+X,
with

dy,=dx,é

and the distance from the field points to the body may be
approximated by

ﬂx—ypﬂz-—-R2 — 2R sin(a) xp+xf,.

3.3, Vorticity Evaluation

Substituting the above approximations for the surface of
the body in Eq. {15) we have the following representation
for the vorticity field at point x:

1 ﬂg (— RZ+ 2R sinla)xp — Xp)dv(t ~ 1)
[RE%

@(R, a)= -L dpv(t—1

X po(x,, T) dx, dr.

Assuming, furthermore, a constant strength in space, p, (1),
for the heat potential over each panel {of size 2d) we may
alternatively express the above equation as

where

e RYav(r~1)

d
dr I e(ZR sin(a).xp— .rf,]/tiv(r— 1) dxp.
vt —t) —d

Iiz_[ #i(7)
0

The integral over the panel may then be calculated explicitly
so that the vorticity field induced by a panel, i, may be
expressed as an integral over time,

oi(x =4 ulr) dx, 1 7)o (17)
with
,— Viiavle—1)
Blx, 1 — 1) =
4rv(t —1)

X [erf(J%) + erf(—;%):l

with x = (x, y) = R(sin a, cos a) (Fig. 2). In order to obtain
an explicit expression for the vorticity field we need to assign
a time dependence for the potential p(s). At first one may
wish to assume that the potential remains constant in [0, 1].
However, we were not able to compute the resulting
integrals in a closed form. Alternatively we may wish to
compute the integral numerically or assume a é-function-
type dependence of the potential in time, thus enabling us to
explicitly evaluate the integral. Hence by setting p;(r)=
#:0(7') (with ¢ in [0, 1]} and assuming for the strength of
the particles that [, = @(x;) hjz. we obtain that

M

hf
Fi{ny=T3(0)+ > > Hidlxg, vy 1),
=1

(18)
The next section presents an efficient way to compute the

values of the surface density x; on the panels by a fast
evaluation of the double heat potential.

3.4. Evaluation of the Surface Density

To complete the evaluation of the vorticity field in the
domain the surface density 4 is required. Following the
derivation of Greengard and Strain {8] Eq. (16} is solved
explicitly by exploiting the local character of the Green’s
function G and its normal derivative on the body. Consider
the double layer heat potential which is defined as

L g
wux 0= | D (x,155,0) u(8) d de.

If 5 is the coordinate along the boundary of the body, the
body may be locally described as

x=s,

y=y(s)

Using a Taylor’s expansion for the shape of the body we
have that

I -
y= 30)+ 3,005 + 3 9,87 =57

Ys=y40)+ y(0)s=xs (19)

1
= p(0) -+, (0) + 3 TSN

where x(s) is the local curvature of the body. The unit
normali to the boundary is given by

= [ys(s)! —XS(S]] — [.})s(s)s —]]

NE T i+
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Differentiating the fundamental solution kernel, it is found
that

_[=20-8), ~203-0)]

VG
dv(r—1)

G(x, g, 1).

Using the above expansions (Eq. (19)) for the description of
the curve and the variation of the surface density along it we
obtain

' €7[x2+"‘2)/4v“71) syo—
xm:zjnjﬁv Y8 s) ds .

drv(r—1)  4dv(r—1)

To evaluate now the above integral we use the transforma-
tions

Z=d(t—1), §=zr.

so that # i becomes (for r = dr):

1 r2vér powo
ol
v Jo

(& — z—yz) e e u(zr) dr dz.

—m \ Z

Replacing y and g by their Taylor expansion yields
#(O)K 3/2
Huf0, r)zT«/nv§t+C0((v5!) ).

Note that since the parameter s is equal to the arclength at
5 =0 and the curvature of the body and the vorticity flux are
invariant under Euclidian motiens 8], substituting the

above result in the equation for the heat potential (Eq. (16))
we find that
pisy= —2F(s)(1 — k(s) /v é) L. (20)
Note that for the case of a cylinder of radius R, the cur-
vature is constant (i« = 1/R) and for the case of a flat plate
the curvature is zero so that the surface potential is only a
function of the vorticity flux.
Combining now Eq.({12), Eq.(20), and Eq. (18} we
obtain an algorithm for updating the particle strengths in

the domain so that the no-slip boundary condition is
enforced,

M N
P = b2 Y el g,y 80,
b J f,.gl(]fx,qmvér) v

where the /-index refers to the panels, the j-index to the
particles, and the #-index to time.

In the present calculations we considered the cases of
ot' = 6t (Method 1) and ¢ = 81/2 (Method 2) and compare
the results of the two approaches. In our computations ¢ is
efficiently calculated using tabulated values, thus avoiding
the costly evaluation of the error functions that are
involved. Moreover, the local character of ¢ requires the
interaction of the each panel only with its nearby particles,
resulting in a computational cost that scales as G(M).

21)

3.5. Test Case I—A Cylinder in Pure Rotation

We test our numerical scheme by simulating the flow
induced by a cylinder (with diameter D) oscillating about

T T T T T

—  Exoct
A Numerical

.5
) - .
u R et = Sy = e &
2 F ]
-05 /
-1.0 1 ) I It ! 1 1 1 L 1 It
1.0 1.5 2.0 2.5

x/R

FIG. 3. Vorticity field around a purely rotating cylinder with @ =1, o =1 at Re = UD/v =40 using Method 1.
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its axis with angular velocity O sin(c¢). An analytic solution
to this problem may be constructed by assuming the stream-
function of the flow to be of the form [7],

Y= (r) e,

Under the assumption of symmetry the vorticity equation
reduces to a diffusion-type equation whose analytic solution
is given by

w(r, t)= A cos(ot)[ kei,(c) K~ (cr)—ker(c) K

— Asin(gr)[kei,(c) K T (cr) —

T (er)]
ker (cY K~ (er)]

with the definitions

t{cry=ker(cr) + kei(cr),

—Jh Q1
=V, J2 keri(e) T kei(ey

A=
where ker (x), kei (x) and ker{x), kei(x) are the Kelvin’s
functions of order 1 and 0, respectively [7]. In Fig. 3 we
show the results of the computed and analytical vorticity
field for T=1 and v =0.5. In erder to avoid the computa-
tion of the transient solution the vorticity field was
imitialized with the analytical solution at the end of a period.

4. A FRACTIONAL STEP ALGORITHM

The present vortex method is implemented in a time-
stepping algorithm that proceeds by generating the particle

59

trajectories and appropriately modifying the particle
strengths. In the present formulation Egs. (5) are not
integrated simultaneously in time but instead a fractional
step algorithm is employed. The governing equations are
solved via a splitting scheme that accommodates the
enforcement of the no-slip boundary condition.

Let us assume that at the nth time step (corresponding
to time r— &) the vorticity field has been computed
(respecting the no-slip boundary condition) and we seek
to advance the solution 10 the next time step (time 1). The
following two step procedure is implemented:

+ Step 1. Using as initial conditions f(x) =
we solve

w"(x", 1 1)

w,+u-Vo=vVa
w(x, 1 —dt) = f(x)

in @x{r—4és1]

. (22a)
Particles are advanced via the Biot-Savart law and their
strength is modified based on the scheme of PSE. Note that
no boundary condition is explicitly enforced in this substep.
The no-slip condition is enforced in the following stage.
Algorithmically then Step | may be expressed as:

%?= "(x", n 81)
dw) ,
—L'h_l= v V2w1 .

At the end of Step 1 a vorticity field w has been established
in the fluid.

Re = 40
8|_1—lll.llll'l TTirrirrrryrrrryrrrrr TT 11 rov17TrT rrrrrrrit
3 ‘ Method 1
B Method 2
g
. ]
4]
Qg
o
[ % =
- o M
2
[0} NI S I A A [E I I O B B | S T T T Y [ W S O Y | N D Y I I
0.00 0.10 0.20 Q.30 0.40 0.50

Time

FIG. 4. Early time history of the drag coefficient for an impuisively started circular cylmder for Re = 40 using the two methods for the variation of
the heat potential. Solid line [2 ], dashed line [57], symbols (present computations).
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» Step 2. The no-slip boundary condition is enforced in
this stage by a vorticity (not particle) creation algorithm.
The spurious vortex sheet () that is observed on the surface
of the body at the end of Step 1 is now computed and then
may be translated to a vorticity flux:

y — dwfdn on 62.
The computed vorticity flux generates vorticity in the

fluid. The vorticity field is augmented by this viscous
mechanism as described by:

a !
%_szwfzzo in @x[t-d11]
wy(x, t—8)=0 in 2 (23)
Jw’ ,
§=F(’}f((1)1)) on é%.
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Note that the diffusion equation is solved here with
homogeneous initial conditions as the initial vorticity field
was taken into account in the previous substep. The solu-
tion at Step 2 is a voriticity field @3 which we superimpose
onto the solution of Step 1 to obtain the vorticity distribu-
tion at the next time step

"t = + w;.

4.1. Test Case II—The Impulsively Started Cylinder

We examine further the validity of our scheme by simu-
lating the flow around an impulsively started cylinder. The
fractional step algorithm described in the previous section is
used In comjunction with a fast vortex method to obtain
high resolution simulations [12].

To demonstrate the validity of our approach we consider
only the early stages of the flow for which analytical solu-
tions exist [2, 5]. At first we compute the drag coefficient
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FIG. 5. Linear plot of the early time history of the drag coefficient for an impulsively started circular cylinder. Solid line [2 ], dashed line [5], symbols

(present computations).
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using the two methods for the time dependence of the heat
potential. In Fig. 4 we observe that Method 2 yields a more
accurate solution. Method | is equivalent to a first-order
(Euler-type) numerical integration of Egq.(17) while
Method 2 may be viewed as a second-order {midpoint-type)
scheme. In Fig. 5 the drag coefficient as computed by
Method 2 is presented and is compared with the analyticat
solutions for a variety of Reynolds numbers (Re = [/D/v).
One may observe the agreement of the resuits of the present
method with those obtained from the analytical solutions,
thus verifying the accuracy of the present approach.

In our computations we used M ~./(Re/{UD dr) with
dt=10.02 for Re=40 and 200 and dr=10.015 and 0.01 for

Re = 10* and 10% respectively.

5. CONCLUSIONS

We have presented a method for the enforcement of the
no-slip boundary condition in the context of the vorticity-
velocity formulation of the Navier—Stokes equations. The
analysis was for two dimensions but it is easily extended to
three dimensions as well. The present scheme is applicable
regardless of the numerical method used to discretize these
equations. It is especially well suited for vortex methods as
it does not require the evaluation of the vorticity and its
spatial derivatives at the wall.

The enforcement of the no-slip boundary condition is
modelied by a vorticity generation mechanism based on the
vorticity flux on the surface of the body. Vorticity enters the
fluid by modifying the strength of the existing particles
without generating new ones. The present scheme is
rigorous and free of ad hoc numerical parameters. It may be
combined with the scheme of PSE so that, in vortex
methods, all viscous effects can be represented by
appropriately modifying the strength of the particles.

ACKNOWLEDGMENTS

We acknowledge many valuable discussions with Dr. Gregoire
Winckeimans. We also acknowledge the support of this research by the
Office of Naval Research through Grants N00014-92-J-1072 and N00014-
92-J-1189. Computer time was provided by Caltech’s Jet Propulsion
Laboratory Supercomputing Project.

REFERENCES

I. C. R. Anderson and M. Reider, CAM Report 93-02, Department of
Mathematics, UCLA, 1993 (unpublished),

. M. Bar-Lev and H. T. Yang, J. Fluid Mech. 72, 625 (1975).

. A I Chorin, J. Fluid Mech. 57, 380 (1973).

. A. I Chorin, J. Comput. Phys. 27, 428 (1978).

. W. M. Collins and S. C. R. Dennis, J. Fluid Mech. 60, 105 (1973).
. P. Degond and S. Mas-Gallic, Math, Comput. 53, 485 (1989).

. A. Gray and G. B. Mathews, A Treatise on Bessel Functions and Their
Applications to Physics (MacMillan and Co., London, 1952).

. L. Greengard and J. Strain, Commun. Pure Appl. Math. 43, 949 (1990).

. A. Friedman, Parrial Differential Equations of Parabelic Type
(Prentice—Hall, Englewood Cliffs, NJ, 1966).

10. R. B. Kinney and M. A. Paclino, ASME J. Appl. Mech. 41 (4) (1974).
11. R. B. Kinney and Z. M. Cielak, 4144 J. 15 (12), 1712 (1977).

12. P. Koumoutsakos, Ph.D. thesis, California Institute of Technology,
1993,

13. P. Koumoutsakos and A. Leonard, Af44 J. 31 (2), 40t (1993).

t4. H. Lamb, Hydrodynamics (Cambridge Univ. Press, Cambridge, UK,
1932).

15. M. J. Lighthill, Introduction. Boundury Layer Theory, edited by
J. Rosenhead (Oxford Univ. Press, New York, 1963), p. 54.

16. 8. Mas-Gallic, C. R. Acad. Sci. Paris Ser. I, 310, 465 (1990).
17. A. Mclntyre, Math. Compui. 46, 71 {1986).

18. W. Prager, Phys. Z. 29, 865 (1928).

19. . C. Wu, 4744 J. 14, 1042 (1976).

o I - B B S PR (O]

=N ]



